$H \rightarrow b\bar{b}$ in VBF with an extra central photon

Fulvio Piccinini

INFN, Sezione di Pavia

June 26th, 2007

in collaboration with E. Gabrielli, F. Maltoni, B. Mele, M. Moretti and R. Pittau

hep-ph/0702119

Outline

- Relevance of a measurement of the $Hb\bar{b}$ Yukawa coupling (low Higgs mass range)
- t ar t H(o b ar b) very challenging (see the discussion of last week)
- $H(\to b\bar b)$ in VBF was studied few years ago at parton level. But recent "pessimistic" indications from complete simulations
- Proposal: $H(\to b\bar b)$ plus an additional γ in VBF mode
 - Features of radiation patterns in signal and background allow to obtain good S/\sqrt{B} (at parton level), balancing the drop of signal events w.r.t. the signal without γ
 - \bullet The same patterns remove the "contamination" from ZZH vertex
 - Parton level study of signal and background (irreducible and reducible) with "optimized cuts"
 - The significance could be improved considering showering effects and jet veto strategies
- Summary

The VBF production mode has been studied at parton level with ALPGEN in

M.L. Mangano, M. Moretti, F. P., R. Pittau and A.D. Polosa, Phys. Lett. B556 (2003) 50

- Typical signature: central $b\bar{b}$ pair + pair of jets in the fwd and bckwd rapidity region
- Main backgrounds:
 - QCD $b\bar{b}jj$ production
 - ullet QCD four jets production (with two light jets mistagged as b jets)
 - QCD $Z(\rightarrow b\bar{b})jj$
 - QCD $W/Z(\rightarrow jj)b\bar{b}$
 - QCD $t \bar{t}
 ightarrow b \bar{b} + {\sf jets}$
 - QCD multiple overlapping events (especially at high luminosity)

June 26th, 2007

Event selection

$$p_{\rm T}^b > 30 \; {\rm GeV}, \; |\eta_b| < 2.5, \; \Delta R_{bb} > 0.7$$

 $|m_{bb} - m_H| < \delta_m \cdot m_H$
 $\epsilon_b = 0.5$

$$p_{\rm T}^{j} > 60 \text{ GeV}, \ |\eta_{j_1} - \eta_{j_2}| > 4.2, \ \Delta R_{jj}, \ \Delta R_{jb} > 0.7$$
 $m_{jj} > 1000 \text{ GeV}$
 $0.01 < \epsilon_{\rm mis} < 0.05$

- selection a) $2.5 < |\eta_j| < 5$, $\eta_{j_1} \eta_{j_2} < 0$, $\Delta R_{bb} < 2$
- selection b) $|\eta_j| < 5$
- The cut $|\eta_{j_1} \eta_{j_2}| > 4.2$ allows to suppress the "background" due to H + 2 jets QCD production

V. Del Duca et al., Phys. Rev. Lett. 87, 122001 (2001)

Main results of that study

- Good S/\sqrt{B} significances (at parton level) with 600 fb⁻¹ of integrated luminosity (at the level of about 5σ for $m_H < 130$ GeV)
- But...
 - S/B of the order of 0.5%
 - trigger problems
 - no leptons to trigger on
 - large QCD 4–jet cross sections also with large $p_{\rm T}$ thresholds (60 GeV) \Rightarrow potential problems for registering all relevant events on tape without loosing signal
- Recent results with full detector simulation seem to give more pessimistic results

some numbers

m_H	115 GeV	120 GeV	140 GeV
Signal	3.0×10^{3}	2.8×10^{3}	1.1×10^{3}
$b\bar{b}jj$	8.6×10^{5}	8.0×10^{5}	5.7×10^{5}
$j_b j_b j j$	6.4×10^{3}	6.1×10^{3}	4.1×10^{3}
$(Z^*/\gamma^* \to b\bar{b})jj$	5.5×10^2	3.8×10^{2}	1.0×10^{2}
$(Z \to b\overline{b})_{\rm res} jj$	1.3×10^{3}	6.8×10^{2}	1.1×10^{1}
$j_b j \oplus j_b j$	7.5×10^3	7.9×10^{3}	9.0×10^{3}

Signal and background events for configuration (a), with $p_{\mathrm{T}}^{j} > 60$ GeV, for three possible values of the Higgs mass. $Q^2 = \langle p_{\mathrm{T}}^{\,\,2} \rangle$. The jjjj entry includes the squared b-mistagging efficiency ($\epsilon_{fake} = 0.01$). The first raw relative to the Z^*/γ^* contribution refers to the effect of the physical mass tail, while the second raw refers to the finite experimental Z mass resolution, ($\delta m_Z/m_Z = 0.12$). The integrated luminosity is 600 fb $^{-1}$. The PDF set used is CTEQ4L

Adding a γ would seem hopeless

- Naively signal and background expected to drop by a factor of the order of α $(S/\sqrt{B} \to \sqrt{\alpha} \ S/\sqrt{B})$
- But a detailed analysis reveals some interesting features...
- Key observation:
 - Signal composed of both Charged Current (CC, with W boson echange) and Neutral Current (NC, with Z boson exchange)
 - Backgrounds (after VBF-like event selection) composed essentially of NC contributions (including also gluon exchange)
- Moreover
 - Reduced rates could be of some help for trigger
 - The presence of an additional photon can give an additional handle for trigger
 - It seems worth to be explored in detail...

Signal

Both charged and neutral current contributions

Irreducible Background $bar{b}\gamma jj$

With typical VBF cuts (mainly a threshold on m_{jj} above M_Z , the main contributions come from only NC subprocesses)

- Gluons do not couple to photons
- γ radiation from separate fermionic current forms separate gauge invariant classes of diagrams

Large angle radiation suppression for NC

- The VBF cuts force the quarks to be in the fwd/bckwd region
- For NC the interference between radiation from in- and out-going legs is destructive for photon angles outside the cone given by the quark legs (angular ordering)
- • ⇒ the bulk of QED radiation is collinear to the in-/out-going quarks
 and is cut away if we require a central photon (see later)
- ullet most of the contribution to the background is expected to come from final state b radiation, even if it is expected to be suppressed due to the -1/3 electric charge of b
- In the signal we expect the Z exchange contributions to be suppressed with respect to the W one. This would allow the separation of WWH and ZZH contributions
- the above semi-quantitative arguments have been tested with an explicit calculation (exact LO by means of ALPGEN and MADEVENT)

Event Selections

Basic cuts

$$p_{\mathrm{T}}^{j} \geq 30 \,\mathrm{GeV}, \quad p_{\mathrm{T}}^{b} \geq 30 \,\mathrm{GeV}, \quad \Delta R_{ik} \geq 0.7,$$
 $|\eta_{\gamma}| \leq 2.5, \quad |\eta_{b}| \leq 2.5, \quad |\eta_{j}| \leq 5,$
 $m_{jj} > 400 \,\mathrm{GeV},$
 $m_{H}(1 - 10\%) \leq m_{b\bar{b}} \leq m_{H}(1 + 10\%),$
1) $p_{\mathrm{T}}^{\gamma} \geq 20 \,\mathrm{GeV},$
2) $p_{\mathrm{T}}^{\gamma} > 30 \,\mathrm{GeV}$

Optimized Cuts by looking at distributions ($m_H = 120 \text{ GeV}$)

$$\frac{d\sigma}{dm_{jj}},\;\frac{d\sigma}{dp_{\mathrm{T}}^{j1}},\;\frac{d\sigma}{dp_{\mathrm{T}}^{b1}},\;\frac{d\sigma}{dm_{\gamma H}},\;\frac{d\sigma}{|\Delta\eta_{jj}|}$$

The most sensitive distribution

Optimized Cuts

$$m_{jj} \ge 800 \,\text{GeV}, \quad p_{\text{T}}^{j1} \ge 60 \,\text{GeV}, \quad p_{\text{T}}^{b1} \ge 60 \,\text{GeV}, |\Delta \eta_{jj}| > 4, \quad m_{\gamma H} \ge 160 \,\text{GeV}, \quad \Delta R_{\gamma b/\gamma j} \ge 1.2$$

Radiation suppressions for S and B

$$\frac{\sigma^{(N)}(H\gamma jj)}{\sigma^{(N)}(H jj)} = 0.0016$$

$$\frac{\sigma^{(C)}(H\gamma jj)}{\sigma^{(C)}(H jj)} = 0.013$$

$$N: qq \to H(\gamma)qq$$

$$q = (u, d, s, c, \bar{u}, \bar{d}, \bar{s}, \bar{c})$$

$$C: u\bar{c} \to H(\gamma) d\bar{s}$$
(8 processes)

Results for S and irreducible B

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120$	$m_H = 130$	$m_H = 140$
$\sigma[H(\to b\bar{b})\gamma jj]$	20 GeV	3.59(7) fb	2.92(4) fb	1.98(3) fb
	30 GeV	2.62(3) fb	2.10(2) fb	1.50(3) fb
$\sigma[b\bar{b}\gamma jj]$	20 GeV	33.5(1) fb	37.8(2) fb	40.2(1) fb
	30 GeV	25.7(1) fb	27.7(1) fb	28.9(2) fb
$\sigma[H(\to b\bar b)jj]$		320(1) fb	254.8(6) fb	167.7(3) fb
$\sigma[b\bar{b}jj]$		103.4(2) pb	102.0(2) pb	98.4(2) pb

Backgrounds decrease by factors of about 3000!

	$p_{\mathrm{T}}^{\gamma,cut}$	$m_H = 120$	$m_H = 130$	$m_H = 140$
$S/\sqrt{B} _{H\gamma jj}$	20 GeV	2.6	2.0	1.3
$ S/\sqrt{B} _{H\gamma jj}$	30 GeV	2.2	1.7	1.2
$S/\sqrt{B} _{Hjj}$		3.5	2.8	1.9

$$L=100~{
m fb^{-1}}$$
 , $\epsilon_b=0.6$

Considering also reducible backgrounds

- $pp \rightarrow \gamma + 4$ jets
- $pp \rightarrow b\bar{b} + 3$ jets
- $pp \rightarrow 5$ jets

$$m_H = 120 \text{ GeV}$$

	$p_{\mathrm{T}}^{\gamma} \geq 20~\mathrm{GeV}$	$p_{\mathrm{T}}^{\gamma} \geq 30~\mathrm{GeV}$
$\sigma(pp \to \gamma + 4j)$	2.27(2) pb	1.72(4) pb
$\sigma(pp \to b\bar{b} + 3j)$	61.1(3) pb	45.1(2) pb
$\sigma(pp \to 5j)$	2.40(1) nb	1.83(1) nb
S/\sqrt{B}	2.2	1.8

$$\epsilon_{\text{fake}} = 0.01, \, \epsilon_{\gamma j} = 1/5000$$

Shower effect and jet veto

We tried to analyze these features by showering with Herwig two samples of unweighted events. A more solid approach would require a matching procedure to reduce the dependence on partonic cuts. To reduce edge effects we shifted the m_{ij} partonic invariant mass cut to 1 TeV with events generated with $m_{ij} > 800 \text{ GeV}$

- After showering, only about 50% of the background events satisfy both the requirements for the tagging jets as leading $p_{\rm T}$ jets and the $m_{jj}>1$ TeV requirement, while the effect is confined at the 7% level for the signal
- In addition to the above, a substantial fraction of the background events (about 50%) contain at least a third jets with η between the tagging jets and $p_{\rm T} \geq 20-30$ GeV, while only 2% of the signal events contain this additional radiation
- Showering and jet veto seem to allow for a substantial gain in statistical significance

Summary

- preliminary parton level studies show that $\gamma H(\to b\bar b)$ VBF production could be promising, despite the drop in signal cross section (bckg cross sections decrease by about a factor of 3000!). It would allow also to separate HWW and HZZ contributions
- With optimized cuts statistical significances of more than 2σ at parton level for $m_H=120$ GeV and 100 fb $^{-1}$
- Shower effects and jet veto strategies should improve substantially the above significance
- The correctness of the above picture should be tested with a complete experimental simulation
- The mechanism of bckg suppression is completely general (requirement: signal dominated by charged currents and background by neutral currents), it could also be at work for other channels